Dr Wei Kong Pang

Joint Postdoctoral Research Fellow with University of Wollongong
   
   
   
Dr Wei Kong Pang

Profile

Dr. Wei Kong Pang received his Ph.D. in Applied Physics from the Curtin University, Western Australia in 2011. After completion of his degree he was first appointed as a joint postdoctoral research fellow, focusing on the research and development of lithium-ion batteries, in the Department of Chemistry at the National Taiwan University and the Department of Materials Engineering at the Tatung University, Taiwan.

 

From June 2013 to present, he is joining University of Wollongong and Australian Nuclear Science and Technology Organisation as postdoctoral fellow. In particular, his main focuses are to study the crystallography of materials for energy storage applications and to understand the structure-function relation, as well as the insertion/extraction mechanism and the working principles, of the electrode materials for both lithium- and sodium- ion batteries using operando neutron powder diffraction, synchrotron X-ray powder diffraction, synchrotron X-ray absorption spectroscopy, and other in-situ techniques

 

Selected publications

Wang, X.C.; Huang, Y.D.; Jia, D.Z.; Pang, W.K.; Guo, Z.P.; Du, Y.P.; Tang, X.C.; Cao. Y.L. Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries. Inorg. Chem., DOI: 10.1021/acs.inorgchem.5b01914. (IF = 4.8) 
 
Wang, D.; Zhong, G.; Pang, W. K.; Guo, Z.; Li, Y.; McDonald, M.; Fu, R.; Mi, J.; Yang, Y. Towards Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li+ Ions Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chem. Mater. 2015, 27 (19), pp 6650–6659 (IF = 8.4)
 
Li, J.; Petibon, R.; Glazier, S.; Sharma, N.; Pang, W. K.; Peterson, V. K.; Dahn, J. R. In-situ Neutron Diffraction Study of a High Voltage Li(Ni0.42Mn0.42Co0.16)O2/Graphite Pouch Cell. Electrochim. Acta 2015, 180, 234-240. (IF = 4.5)  
 
Pang, W. K.; Kalluri, S.; Peterson, V. K.; Sharma, N.; Kimpton, J.; Johanessen, B.; Liu, H.; Dou, S.; Guo, Z. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries. Chem. Mater. 2015, 27(8), 3150-3158. (IF = 8.4, citation = 3)
 
Sharma, N.; Pang, W. K.; Peterson, V.; Guo, Z. "In situ powder diffraction studies of electrode materials in rechargeable batteries" ChemSusChem. 2015, 8(17), 2826-2853. (IF = 7.7)  
 
Sharma, N.; Gonzalo, E.; Pramudita, J. C.; Han, M. H.; Brand, H. E. A.; Hart, J.; Pang, W. K.; Guo, Z.; Rojo, T. “The unique structural evolution of the O3-phase Na2/3Fe2/3Mn1/3O2 during high rate charge/discharge: A sodium-centred perspective”. Adv. Funct. Mater. 2015, 25(31), 4994-5005. (IF = 11.8)  
 
Petibon, R.; Li, J.; Sharma, N.; Pang, W. K.; Peterson, V.; Dahn, J.R. “The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes”. Electrochim. Acta 2015, 174, 417-423. (IF = 4.5)  
 
Pang, W. K. and Peterson, V. “Customized batteries for evolution study using in-situ neutron diffraction”. J. Appl. Cryst. 2015, 48, 280-290. (IF = 3.7, citation = 1)
 
Kalluri, S., Pang, W. K.; Seng, K. H.; Chen, Z.; Guo, Z.; Liu, H. K.; Dou, S. X. “One-dimensional nanostructured design of Li1+x(Mn1/3Ni1/3Fe1/3)O2 as a dual cathode for lithium-ion and sodium-ion batteries.” J. Mater. Chem. A, 2015, 3(1), 250-257. (IF = 7.4, citation = 4)
 
Cai, Y.; Huang, Y.; Wang, X.; Jia, D.; Pang, W. K.; Guo, Z.; Du, Y.; Tang, X., Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J. Power Sources 2015, 278(0), 574-581. (IF = 6.2, citation = 1)
 
Pang, W. K.; Alam, M.; Peterson, V. K.; Sharma, N. “Overcharging so-called CGR and NCR cathodes in commercial lithium-ion batteries: Insights gained from in situ neutron powder-diffraction.” J. Mater. Res. 2015, 30, 373-380. (IF = 1.7, citation = 1)
 
Zheng, Z.; Pang, W. K.; Jia, D.; Huang, Y.; Guo, Z.; Tang, X. Solvothermal synthesis and electrochemical performance of hollow LiFePO4 nanoparticles. J. Alloy Compd. 2015, 640, 95-100. (IF = 3.0, citation = 1)
 
Pang, W. K.; Peterson, V. K.; Sharma, N.; Shiu, J.-J.; Wu, S.-h. Lithium Migration in Li4Ti5O12 Studied Using in Situ Neutron Powder Diffraction. Chem. Mater. 2014, 26, 2318-2326. (IF = 8.4, citation = 16)
 
Pang, W. K.; Peterson, V. K.; Sharma, N.; Zhang, C.; Guo, Z. Evidence of Solid-Solution Reaction upon Lithium Insertion into Cryptomelane K0.25Mn2O4 Material. J. Phys. Chem. C 2014, 118, 3976-3983. (IF = 4.8, citation = 5)
 
Pang, W. K.; Sharma, N.; Peterson, V. K.; Shiu, J.-J.; Wu, S.-H. In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode in a LiNi0.5Mn1.5O4||Li4Ti5O12 full cell. J. Power Sources 2014, 246, 464-472. (IF = 6.2, citation = 23)
 
Yang, X.; Huang, Y.; Wang, X.; Jia, D.; Pang, W. K.; Guo, Z.; Tang, X. High rate capability core–shell lithium titanate@ceria nanosphere anode material synthesized by one-pot co-precipitation for lithium-ion batteries. J. Power Sources 2014, 257, 280-285. (IF = 6.2, citation = 7)
 
Kalluri, S; Seng, K. H.; Pang, W. K.; Guo, Z.; Chen, Z.; Liu, H. K.; Dou, S. X. Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries. ACS Appl. Mater. Interface 2014, 6 (12), 8953–8958. (IF = 6.7, citation = 5)
 
Zhou, T.; Pang, W. K.; Zhang, C.; Yang, J.; Chen, Z.; Liu, H. K.; Guo, Z. “Enhanced Sodium ion Battery Performance by Structural Phase Transition from Two-dimensional Hexagonal SnS2 to Orthorhombic SnS.” ACS Nano 2014, 8, 8323-8333. (IF = 12.9, citation = 37)
 
Pang, W.K.; Kalluri, S.; Peterson, V. K.; Dou, S.X.; Guo, Z.P. “Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode.” Phys. Chem. Chem. Phys. 2014, 16 (46), 25377 - 25385. (IF = 4.5, citation = 4)
 
Brant, W. R.; Schmid, S.; Du, G.; Brand, H. E. A.; Pang, W. K.; Peterson, V. K.; Guo, Z.; Sharma, N. “In situ neutron powder diffraction experiments on custom made lithium-ion batteries J. Vis. Exp. 2014, e52284. (citation = 1) 
 
Pang, W. K.; Peterson, V. K.; Sharma, N.; Shiu, J.-J.; Wu, S.-h. Structure of the Li4Ti5O12 Anode during Charge-Discharge Cycling. Powder Diffraction 2014, 29(S1), S59-63. (IF = 0.6, citation = 2)
 
Alam, M.; Hanley, T.; Pang, W. K.; Peterson; V.; Sharma, N. Comparison of the so-called CGR and NCR cathodes in commercial lithium-ion batteries using in situ neutron powder diffraction. Powder Diffraction 2014, 29(S1), S35-39. (IF = 0.6)
 
Huang, W.Y.; Yoshimura, F.; Ueda, K.; Pang, W. K.; Su, B.J.; Jang, L.Y.; Chiang, C.Y.; Zhou, W.Z.; Huang, S.J.; Liu, R.S. Domination of Second-Sphere Shrinkage Effect to Improve Photoluminescence of Red Nitride Phosphors. Inorganic Chem. 2014, 53(24), 12822-12831.  (IF = 4.8, citation = 2)
 
Low, I. M.; Pang, W. K. In situ diffraction study of self-recovery in vacuum decomposed Al2TiO5. J. Aust. Ceram. Soc. 2013, 49, 48-52. (IF = 0.7)
 
Chen, M.-S.; Wu, S.-h.; Pang, W. K. Effects of vanadium substitution on the cycling performance of olivine cathode materials. J. Power Sources 2013, 241, 690-695. (IF = 6.2, citation = 4)
 
Pang, W. K.; Lee, J. Y.; Wei, Y. S.; Wu, S. H. Preparation and characterization of Cr-doped LiMnO2 cathode materials by Pechini's method for lithium ion batteries. Mater. Chem. Phys. 2013, 139, 241-246. (IF = 2.3, citation = 5)
 
Shiu, J.-J.; Pang, W. K.; Wu, S.-h. Preparation and characterization of spinel LiNi0.5−xMgxMn1.5O4 cathode materials via spray pyrolysis method. J. Power Sources 2013, 244, 35-42. (IF = 6.2, citation = 6)
 
Low, I. M.; Yam, F. K.; Pang, W. K. In-situ diffraction studies on the crystallization and crystal growth in anodized TiO2 nanofibres. Mater. Lett. 2012, 87, 150-152. (IF = 2.5, citation = 6)
 
Wu, S.-h.; Chen, M.-S.; Pang, W. K.; Liu, F.-P. Preparation and Characterization of Fe-substituted Li3V2(PO4)3 Cathodes for Li-ion Batteries. J. Chi. Chem. Soc. 2012, 59, 1238-1243. (IF = 0.6)
 
Low, I. M.; Pang, W. K. Kinetics of phase decomposition in MAX phases - A comparative diffraction study. J. Aust. Ceram. Soc. 2011, 47, 16-22. (IF = 0.7)
 
Low, I. M.; Pang, W. K.; Kennedy, S. J.; Smith, R. I. High-temperature thermal stability of Ti2AlN and Ti4AlN3: A comparative diffraction study. J. Euro. Ceram. Soc. 2011, 31, 159-166. (IF = 2.9, citation = 10)
 
Pang, W. K.; Low, I. M.; O’Connor, B. H.; Peterson, V. K.; Studer, A. J.; Palmquist, J. P. In situ diffraction study of thermal decomposition in Maxthal Ti2AlC. J. Alloy. Compd. 2011, 509, 172-176. (IF = 3.0, citation = 8)
 
Pang, W. K.; Low, I. M.; Hanna, J. V. Detection of amorphous silica in Air-Oxidized Ti3SiC2 at 500-1000°C by NMR and SIMS. Key Eng. Mater. 2010, 434-435, 169-172.
 
Pang, W. K.; Low, I. M.; Connor, B. H. O.; Studer, A. J.; Peterson, V. K.; Sun, Z. M.; Palmquist, J. P. Comparison of thermal stability in MAX 211 and 312 phases. J. Phys. Conf. Ser. 2010, 251, 012025. (citation = 12)
 
Pang, W. K.; Low, I. M.; Hanna, J. V. Characterisation of amorphous silica in air-oxidised Ti3SiC2 at 500–1000 °C using secondary-ion mass spectrometry, nuclear magnetic resonance and transmission electron microscopy. Mater. Chem. Phys. 2010, 121, 453-458. (IF = 2.3, citation = 2)
 
Pang, W. K.; Low, I. M.; Kennedy, S. J.; Smith, R. I. In situ diffraction study on decomposition of Ti2AlN at 1500–1800 °C in vacuum. Mater. Sci. Eng. A 2010, 528, 137-142. (IF = 2.6, citation = 5)
 
Pang, W. K.; Low, I.-M.; Sun, Z.-M. In Situ High-Temperature Diffraction Study of the Thermal Dissociation of Ti3AlC2 in Vacuum. J. Am. Ceram. Soc. 2010, 93, 2871-2876. (IF = 2.6, citation = 11)
 
Pang, W. K.; Low, I. M.; O’Connor, B. H.; Sun, Z. M.; Prince, K. E. Oxidation characteristics of Ti3AlC2 over the temperature range 500–900 °C. Mater. Chem. Phys. 2009, 117, 384-389. (IF = 2.3, citation = 9)
 
Pang, W. K.; Low, I. M. Diffraction study of thermal dissociation in the ternary Ti-Al-C system. J. Aust. Ceram. Soc. 2009, 45, 30-33. (IF = 0.7)
 
Pang, W. K.; Low, I. M.; O'Connor, B. H.; Studer, A. J.; Peterson, V. K.; Palmquist, J. P. Effect of vacuum annealing on the thermal stability of Ti3SiC2/TiC/TiSi2 composites. J. Aust. Ceram. Soc. 2009, 45, 72-77. (IF = 0.7)
 
Pang, W. K.; Low, I. M.; Hanna, J. V. Detection of amorphous silica in air-oxidized Ti3SiC2 at 500 - 1000 °C. J. Aust. Ceram. Soc. 2009, 45, 39-43. (IF = 0.7)
 
Oo, Z.; Low, I. M.; Palmquist, J. P.; Pang, W. K.; Avdeev, M. Mapping of composition, phase transitions and properties in oxidized Ti3SiC2. Key Eng. Mater. 2008, 368-372 PART 2, 986-988.
 
Pang, W. K.; Low, I. M.; Prince, K. E.; Atanacio, A. J. Mapping of elemental composition in air-oxidized Ti3SiC2. J. Aust. Ceram. Soc. 2008, 44, 52-55. (IF = 0.7)
 
Low, I. M.; Somers, J.; Pang, W. K. Synthesis and properties of recycled paper-nano-clay-reinforced epoxy eco-composites. Key Eng. Mater. 2007, 334-335 I, 609-612. 
 
Pang, W. K.; Tezuka, N.; Low, I. M.; Mehrtens, E. G.; Latella, B. A. Physical and mechanical properties of mullite-whisker reinforced alumina composites. Key Eng. Mater. 2007, 334-335 I, 325-328.
 
Low, I. M.; Pang, W. K.; Davies, I. J. Mapping the microstructure-property relationships in cortical bone. Key Eng. Mater. 2006, 309-311 I, 523-526.