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Dislocations & Sub-Grain Structure
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= To maintain compatible deformation across variously oriented grains in a
polycrystalline aggregate, the voids and overlaps between the individual grains, «
which would otherwise appear due to the crystallites (grains) anisotropy are
corrected by the storing a portion of dislocations in the form of geometrically-
necessary dislocations (GNDs). Plastically deformed material also stores so-

called statistically-stored dislocations (SSDs), which are stored by mutual

random trapping. Both GNDs and SSDs arrange themselves into energetically
favourable configurations, forming geometrically-necessary boundaries (GNBs)

and incidental dislocation boundaries (IDBs), respectively.

~ 50pm = 500000A




Experiment

400 —r—v—

350 \’oa&o%
e
=)
3 )
c
o |

300

N

w

o
]

True Stess [MPa]
N
o
o

150 - . i
L EBSD Measurvmen

100 - | ws i] l |

s |. .l — A

50 - BF =i Looading axls |

iR

of | 11% 3.2%  6.0% 7.8% 9.6% 11.4% 14%
0 2 4 6 8 10 12 14 16
True Plastic Strain [%)]

— EBSD orientation map showing the overall = Interrupted tensile tests were performed to varying
equiaxed grain structure of our solution-annealed levels of imparted plastic strain. Samples were
Ni201 before testing. extracted from the gauge length for EBSD and HRSD
measurement.
Ni-201
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EBSD Measurements
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Electron Back-Scatter Diffraction (EBSD)

| Kukuchi Diffraction
Pattern

Back-Scattered
. . . Electrons
= EBSD, is a scanning electron microscope (SEM)

based technique that gives crystallographic information
about the microstructure of a sample. = The data collected with EBSD is spatially distributed
and is visualised in so-called EBSD orientation maps.




EBSD & Dislocations
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= GNDs have a geometrical consequence giving rise to a curvature of
the crystal lattice, which can be measured by EBSD technique. The crystal
orientation (¢,,®,¢,) changes only when the electron beam crosses an
array of GNDs that has a net non-zero Burger’s vector.




Lattice Curvatu
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= A schematic representation of lattice curvature components calculation

ented (AB) by a rotation around the

common crystallographic axis [100]_ ([uvw] ) and separated by pixel separation

(2],
between two neighbouring crystals misori
distance (Ax,). Note, that in this example:
|
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K;,~A0;/AX,, and K,,,K3, = 0.

Lattice Curvature Tensor
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Lattice Curvature & GND Density
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dislocation types




Dislocation Types (fcc)
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dislocations of opposite
sign needs to be distinguished
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Lower-Bound GND Density
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GND Density
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Not all dislocation types are
equally energetically
favourable.

Lower-bound GND Density
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» With a set of 6 linear
equations and 36
unknowns, a large
number of possible
solutions exists
whereby a unique
solution cannot be
obtained. It is therefore
necessary to constrain
the solution using
physically-based
constraints.
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GND Density
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= Density of geometrically-necessary dislocations (GND, ps) maps calculated from the EBSD-measured Euler Angles (¢,,D,¢,)
for specimens with 0% (as-received), 7.8% and 13.9% of imparted plastic strain.

=> Step size (h) = 200 nm = Discrete measurements => GNDs arrange themselves into energetically
= Maghnification = 153x provide information on spatial favourable configurations forming geometrically-
distribution of GND across the necessary boundaries (GNBs) subdividing grains into

microstructure. the sub-grains.




GND Spacing

> Loading Direction
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= Spacing between geometrically-necessary dislocations (GND, d;) recalculated from the
GND density (pg) for specimens with 0% (as-received), 7.8% and 13.9% of imparted plastic

strain. dg = 1/\/@
N

= Non-uniform distribution of GNDs in the microstructure as GNDs \

arrange themselves into energetically favourable configurations Dislocation .
R L ) . GND Density

subdividing grains into the sub-grains. spacing




GND Density - High Resolution

lGrain Boundary lGrain Boundary

1E12 1E13 1E14 1E15
ps [M :]

= Density of geometrically-necessary dislocations = Spacing between geometrically-necessary

(GND, pg) calculated from the EBSD-measured Euler dislocations (GND, d) recalculated from the GND

Angles (¢,,D,b,). density (pg)-

= Step size (h) =20 nm
= Maghnification = 1000x




GND Density

EBSD Data - GND Density
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114

= 413.5

13

log (GND Density) [1/m’]

12.5

= Density of geometrically-necessary dislocations (GND,
pg) maps calculated from the EBSD-measured Euler

SEM image Angles (¢,,®,d,).




Microstructure-Averaged GND Density
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= Distribution (histogram) of discrete GND density (pg)
measurements for specimen with 0% (as-received), 7.8% and
13.9% of imparted plastic strain (g,).

Log-Normal Distribution

Fpel o) = ;ex (‘(IU(PG) - ll)2>
i xo2m 2 202

MEANof the log-  nNaqn & Variance
normal distribution

2
T Pmipe) = exp (u + a—)

2

v(pg) = exp(2u + o?)(exp(a?)
pz

VARIANCE of the log-
normal distribution

=> The variance of the GND density distribution describes
the heterogeneity of the GND distribution across
variously oriented grains within the microstructure, the
mean can be then taken as the microstructure-averaged
(bulk) GND density.




Microstructure-Averaged GND Density
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= The development of the mean GND density as a function of
number of analysed grains in GND density maps for specimen
with 0% (as-received), 7.8% and 13.9% of imparted plastic strain
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VARIANCE of the log-
normal distribution

=> Due to the increase in heterogeneity of GND distribution
with imparted plastic strain, a larger number of grains is
required to reach solution convergence.




Microstructure-Averaged GND Density
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= The development of the mean GND density = The development of the variance of GND density
distribution as a function of imparted plastic strain (g,) distribution as a function of imparted plastic strain ()

for all tested specimens. for all tested specimens.




GND Types in Solution

= Loading Direction
Mean of Screw GNDs Ratio

02 03 04 05 06 07 08 09 10

Screw GNDs Ratio

= Map showing the ratio of screw dislocations to the
total number of dislocations in the solution (6) for the
specimen with 13.9% imparted plastic strain.

0 01

10 v # v - 4 ' L] L
1 => all screw dlltlocauom
| |
~ Number of screw GNDs in the solution
Screw GNDs Ratio =
08 Total number of GNDs in the solution .
06 -
on average 2 screw dislocations
04 | out of 6 are pr:nl tzn solu;n -
02 | o
®
A SRR L
o o o. '>."° .c"w. dh!m!’m‘ L . L " L L A
00 25 50 75 100 125 150 175
Imparted ¢, [%)

= Screw dislocation ratio as a function of imparted
plastic strain for all tested specimens.

= The uniqueness of the solution is not guaranteed.
= Only pure edge and pure screw dislocations have
been considered in the calculation.




HRSD Measurements
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HRSD Set-Up

- Detector: 2048 x 2048 pixels
- Pixel Size: 200 x 200 pm
- Distance: 1873 mm
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Incident High T T T
Energy X-ray Beam
. . . . hﬁ
= High-resolution synchrotron diffraction (HRSD) set-up at 1-1D Beam Size 200,m

high-energy beamline at the Advanced Photon Source (APS),
Argonne National Laboratory (ANL).




Diffraction Peak Broadening
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= The total diffraction peak shape (which includes peak
broadening) I;o74, Of a is the convolution of the shape contribution
caused by the size of coherently scattering domains (sub-grains) /g,
and the contribution caused by strain fields of present dislocations

Strain (Dislocation) &
Size {Sub-grain)
Broadening

/

ISTRAIN'

= Convolution is defined as the invers Fourier transform of the
product of the individual Fourier transform of the components.

v
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contribution to the Strain (dislocation) I
peak shape contribution to the
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20| T. Ungar et al., J. Appl. Cryst. 34, 2001, pp. 298-310.




Diffraction Peak Broadening

Williamson-Hall Plot
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= The broadening due to the size of the coherently diffracting domains (sub-grains) is the same for all hkl
diffraction peaks, while the broadening component due to the strain field of present dislocations varies between
diffraction peaks. This variation in the strain (dislocation) broadening is not monotonous due to the anisotropic
behaviour described by the dislocation contrast factors.
|
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Diffraction Peak Broadening
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o and 13.9% of imparted plastic strain. The different behavior of size (sub-grain)
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Total Dislocation Density & Sub-Grain Size

Gearnetricaly Nrosseary
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= Total dislocation density (py) and size of the coherently scattering domains (SCDs) obtained by line profile
analysis (LPA) of HRSD patterns as a function of imparted plastic strain (g,) - open symbols represents individual
measurements along the sample loading axis, and solid symbol represents the mean values.




EBSD + HRSD
Measurements
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EBSD- & HRSD- Measured Dislocation Density
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= Comparison of the HRND-measured total dislocation — Both GNDs and SSDs contribute to the work-

density (py) and the EBSD-measured density of GNDs (pg),
together with expected dislocation densities calculated
using the modified Taylor’s model, and single-slip Ashby’s
model.

hardening of the material.
= SSDs represent more than 80% of all the present
dislocations.




GND Density & Size of CSDs

Size of CSDs ((X),) [nm]
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= Comparison of the HRSD-measured size of CSDs (red
circles) with EBSD-measured spacing of GNDs (d;) (blue
squares), and the estimated minimum size of CSDs (green
triangles) from EBSD-measured density of GNDs (p;).

GNDs spacing
Size of SSDs from pg /

v

2 243
>

EBSD GNDs
step size density
p, from (X),
2 1

P62 138xX),
LN

o\

Size of SSDs

step size

= This defines the connection between EBSD-
measured pg and HRSD-measured (X), one can then
estimate pg from (X),.




Conclusions

——
— EBSD measures the lower-bound p., while HRSD measures pr.

= The minimum detected pr measured by HRSD is about 1E13 m2, while
the minimum p; measured by EBSD is about 2E12 m™2.

—> EBSD is more sensitivity to the small amount of plastic deformation in the
material, while HRSD gets more accurate with higher amount of plastic
deformation.

—> There is a connection between EBSD-measured p; and HRSD-measured
size of CSDs ((X),)-

—> EBSD = Density of GNDs (p;), + estimate the minimum Size of CSDs

—> HRSD = Total Dislocation Density (pr), size of CSDs ((X),), + estimate of
minimum density of GNDs (p()

2 2d
(X)a 2 (X) gmin = f TRl

va ‘\GNDS

EBSD density
27| step size

GNDs spacing
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Thank you for your time and
interest in this work. We hope you
will find it useful.

Developed Matlab code for calculation of GNDs is available as a supplementary material with out Acta Materialia paper.



