

On the Measurement of Dislocations and Dislocation Structures using EBSD and HRSD TechniquesActa Manslatia 175 (2019) 297-313

O. Muránsky, L. Balogh, M. Tran, C.J. Hamelin, J.-S. Park, M. R. Daymond

Only thanks to the support of many people this paper has happened. Special thank you to T. Palmer (ANSTO), T. Nicholls (ANSTO), Z. Zhang (ANSTO), L. Edwards (ANSTO), and M.R. Hill (UC). I hope you find the paper useful. /OM

Contents lists available at ScienceDirect Acta Materialia

journal homepage: www.elsevisr.com/locate/actamat

Full length article

On the measurement of dislocations and dislocation substructures using EBSD and HRSD techniques

O. Muränsky ^{a, b, *}, L. Balogh^r, M. Tran^{d, a}, C.J. Hamelin^{e, a}, J.-S. Park¹, M.R. Daymond[®]

² Australian Nuclear Science and Technology Organisation, Lucas Heights, NNN, Australia ³ School of Mechanical and Menufacturing Engineering, UNSW Sydney, Sydney, Australia ² Queen's University, Mechanical and Materials Engineering, Kingston, ON, Canada ⁴ University of California. Mechanical and Aerospace Engineering, Danis, CA, USA " EDF Forme Retiremed Chaptershire (K) ¹ Advanced Photon Source, Argenty National Laboratory, Lemont, B., USA

ARTICLE INFO

ARSTRACT

Anide history. Received 26 March 2019 Received in revised form. 14 May 2019 Accepted 17 May 2019 Available ordine 7 June 2019

Keywords. Dislocation density Metal planticity Electron back-scatter diffraction (ERSD). High-resolution synchrotron diffraction craestin Peak Irreadening

The accumulation of the dislocations and development of dislocation structures in plastically deformed Ni201 is examined using dedicated analyses of Electron Back-Scatter Diffraction (EBSD) acquired orientation maps, and High-Resolution Synchrotron Diffraction (HRSD) acquired patterns. The results show that the minimum detectable microstructure-averaged (bulk) total dislocation density (p2) measured via HRSD is approximately 1E13 m⁻², while the minimum GND density (ρ_0) measured via H8SD is approximately $2E12$ m⁻² - the H8SD technique being more sensitive at low plausic strain. This highlights complementarity of the two techniques when attempting to quantify amount of plastic deformation (damage) in a material via a measurement of present dislocations and their structures. Furthermore, a relationship between EBSD-measured Ac and the size of HRSD-measured Coherently Scattering Domains (CSDs) has been mathematically derived - this allows for an estimation of the size of CSDs from EBSD-acquired orientation maps, and conversely an estimation of ρ_G from FIRSD-measured size of CSDs. The measured evolution of ρ_T , and ρ_G is compared with plasticity theory models - the current results suggest that Ashby's single-slip model underestimates the amount of GNDs (ρ_G), while Taylor's model is correctly predicting the total amount of dislocation (μ_t) present in the material as a function of imparted plastic strain.

C 2019 Acta Materialia Inc. Published by Ebevier Ltd. All rights reserved

Dislocations & Sub-Grain Structure

 \sim 50 μ m = 500000Å

 \Rightarrow To maintain compatible deformation across variously oriented grains in a polycrystalline aggregate, the voids and overlaps between the individual grains, which would otherwise appear due to the crystallites (grains) anisotropy are corrected by the storing a portion of dislocations in the form of geometricallynecessary dislocations (GNDs). Plastically deformed material also stores socalled statistically-stored dislocations (SSDs), which are stored by mutual random trapping. Both GNDs and SSDs arrange themselves into energetically favourable configurations, forming geometrically-necessary boundaries (GNBs) and incidental dislocation boundaries (IDBs), respectively.

Experiment

 \Rightarrow EBSD orientation map showing the overall equiaxed grain structure of our solution-annealed Ni201 before testing.

 \Rightarrow Interrupted tensile tests were performed to varying levels of imparted plastic strain. Samples were extracted from the gauge length for EBSD and HRSD measurement.

Ni-201

Ni		Si	ъ	Fe.	Mn ¹	Cr.	Mo	Cu	\mathbf{v}	Nb		\overline{A}
bal.	0.01	0.07	< 0.01	0.03	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	0.07	< 0.01

02|

EBSD Measurements

Electron Back-Scatter Diffraction (EBSD)

 \Rightarrow EBSD, is a scanning electron microscope (SEM) based technique that gives crystallographic information about the microstructure of a sample. \Rightarrow The data collected with EBSD is spatially distributed

and is visualised in so-called EBSD orientation maps.

EBSD & Dislocations

 \Rightarrow GNDs have a geometrical consequence giving rise to a curvature of the crystal lattice, which can be measured by EBSD technique. The crystal orientation (ϕ_1 , Φ , ϕ_2) changes only when the electron beam crosses an array of GNDs that has a net non-zero Burger's vector.

Lattice Curvature

 \Rightarrow A schematic representation of lattice curvature components calculation between two neighbouring crystals misoriented (∆θ) by a rotation around the common crystallographic axis $[100]_{\text{c}}$ ([uvw]_c) and separated by pixel separation distance (Δx_2). Note, that in this example: $\kappa_{12} \approx \Delta \theta_1 / \Delta x_2$, and κ_{22} , κ_{32} = 0.

$$
\kappa_{11} \approx \frac{\Delta\theta_1}{\Delta x_1}; \kappa_{21} \approx \frac{\Delta\theta_2}{\Delta x_1}; \kappa_{31} \approx \frac{\Delta\theta_3}{\Delta x_1}
$$

$$
\kappa_{12} \approx \frac{\Delta\theta_1}{\Delta x_2}; \kappa_{22} \approx \frac{\Delta\theta_2}{\Delta x_2}; \kappa_{32} \approx \frac{\Delta\theta_3}{\Delta x_2}
$$

Lattice Curvature & GND Density

07|W. Pantleon, Scripta Materialia, 58, 2008, pp. 994-997.

Dislocation Types (fcc)

 $(111)(0\bar{1}1)$ $\mathcal{F}(\overline{1}11)(0\overline{1}1)$ $(\overline{1}11)\langle 101\rangle$ $\overline{1}\overline{1}1\rangle\langle 101\rangle$ $(1\overline{1}1)\langle 011\rangle$ $(111)\langle 011\rangle$ $(1\bar{1}1)\langle\bar{1}01\rangle$ $(\overline{1}11)(\overline{1}01)$ $(111)(110)$ $(111)\langle 110\rangle$ $(\overline{1}\,\overline{1}1)\langle0\,\overline{1}0\rangle$ $(\overline{1}\,\overline{1}1)\langle 0\,\overline{1}0\rangle$ $\frac{location \ Types}{\frac{111}{(0.071)}}$ $\begin{array}{r} \hline \textbf{location Types} \\\hline\textbf{111}\rangle\langle0\bar{11}\rangle \\\hline \textbf{111}\rangle\langle101}\\\hline \textbf{111}\rangle\langle101}\\\hline \textbf{111}\rangle\langle101}\rangle \\\hline \textbf{Burger's Ve} \end{array}$ **Ocation Types**

111) $\langle 0\overline{1}1\rangle$
 $\overline{1}11\rangle\langle 101\rangle$
 $\overline{1}11\rangle\langle 101\rangle$
 Burger's Video)
 Burger's Video)
 Burger's Video)
 Burger's Video) Ocation Types

111) $\langle 0\overline{1}1\rangle$

111) $\langle 0\overline{1}1\rangle$

111) $\langle 101\rangle$

111) $\langle 101\rangle$

111) $\langle 011\rangle$

 $\overrightarrow{b}_1 = \langle 0\overline{1}1\rangle$

 $\overrightarrow{b}_2 = \langle 101\rangle$ **location Types**

111) $\langle 0\overline{1}1\rangle$
 $\frac{\overline{1}11}{\langle 101\rangle}$
 $\frac{\overline{1}11}{\langle 101\rangle}$
 $\frac{\overline{1}11}{\langle 011\rangle}$
 $\downarrow \frac{\overline{1}11}{\langle 011\rangle}$
 $\downarrow \frac{\overline{1}11}{\langle 011\rangle}$
 $\downarrow \frac{\overline{1}11}{\langle 011\rangle}$
 $\downarrow \frac{\overline{1}11}{\langle 011\rangle}$
 $\$ **IOCALION Types**

111) $\langle 011 \rangle$

111) $\langle 101 \rangle$

111) $\langle 101 \rangle$

111) $\langle 011 \rangle$
 $\vec{b}_1 = \langle 011 \rangle$
 $\vec{b}_2 = \langle 101 \rangle$
 $\vec{b}_3 = \langle 011 \rangle$
 $\vec{b}_4 = \langle 101 \rangle$ 111) $\langle 0\overline{1}1\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 011\rangle$
 $\frac{111}{\overline{1}11}\rangle\langle \overline{1}01\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle \overline{1}01\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle \overline{1}0$ 111) $\langle 0\overline{1}1\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 011\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle \overline{1}01\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle \overline{1}0$ 111) $\langle 0\overline{1}1\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle 101\rangle$
 $\frac{111}{\overline{1}11}\rangle\langle 011\rangle$
 $\frac{111}{\overline{1}11}\rangle\langle\overline{1}01\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle\overline{1}01\rangle$
 $\frac{\overline{1}11}{\overline{1}11}\rangle\langle\overline{1}01\rangle$ $\begin{array}{|c|c|}\n\hline\n\overline{1}11\rangle\langle0\overline{1}1\rangle \\
\hline\n\overline{1}11\rangle\langle101\rangle \\
\hline\n\overline{1}11\rangle\langle011\rangle \\
\hline\n\overline{1}11\rangle\langle011\rangle \\
\hline\n\overline{1}11\rangle\langle011\rangle \\
\hline\n\overline{1}11\rangle\langle\overline{1}01\rangle \\
\hline\n\overline{1}11\rangle\langle\overline{1}01\rangle \\
\hline\n\overline{1}11\rangle\langle\overline{1}01\rangle \\
\hline\n\overline{1}11$ $\begin{array}{l|l|l} \hline \overline{1} & 11) \langle 101 \rangle \ \hline \overline{1} & 11) \langle 101 \rangle \ \hline \overline{1} & 11) \langle 011 \rangle \ \hline \overline{1} & 11) \langle 011 \rangle \ \hline \overline{1} & 11) \langle 111 \rangle \ \hline \overline{1} & 11) \langle \overline{1} & 11 \rangle \ \hline \overline{1} & 11) \langle \overline{1} & 11 \rangle \ \hline \overline{1} & 11) \langle 110 \rangle \ \hline \overline{1} & 11$ **Burger's Ve**
 Burger's Ve
 Example 111 $\langle 011 \rangle$
 Example Deformation Modes

12x Deformation Modes

$$
\begin{array}{|c|c|}\n\hline\n12x & 6x \\
\hline\n\vec{b} \perp \vec{t} & \vec{b} \parallel \vec{t} \\
\vec{t}_1 = \vec{b}_1 \times \vec{n}_1 & \vec{t}_3 = \vec{b}_1 \\
\vec{t}_2 = \vec{b}_1 \times \vec{n}_2 & \vec{t}_4 = \vec{b}_2 \\
\vec{t}_3 = \vec{b}_2 \times \vec{n}_3 & \vec{t}_4 = \vec{b}_2 \\
\vec{t}_4 = \vec{b}_2 \times \vec{n}_4 & \vec{t}_5 = \vec{b}_3 \\
\vec{t}_5 = \vec{b}_3 \times \vec{n}_5 & \vec{t}_6 = \vec{b}_4 \\
\vec{t}_6 = \vec{b}_4 & \vec{t}_7 = \vec{b}_5 \\
\vec{t}_6 = \vec{b}_3 \times \vec{n}_6 & \vec{t}_7 = \vec{b}_5 \\
\vec{t}_7 = \vec{b}_4 \times \vec{n}_7 & \vec{t}_8 = \vec{b}_6 \\
\vec{t}_7 = \vec{b}_5 & \vec{t}_{10} \\
\vec{t}_8 = \vec{b}_6 & \vec{t}_{11} \\
\vec{t}_{12} = \vec{b}_6 \times \vec{n}_{12} & \vec{t}_{12} & \vec{b}_6 \times \vec{n}_{12}\n\end{array}
$$

 $\frac{12x}{\overrightarrow{b} \perp \overrightarrow{t}}$
 $\frac{12x}{\overrightarrow{b} \perp \overrightarrow{t}}$
 $\frac{1}{\overrightarrow{b} \parallel \overrightarrow{t}}$
 $\frac{1}{\overrightarrow{b} \parallel \overrightarrow{t}}$
 $\frac{1}{\overrightarrow{b} \perp \overrightarrow{t}}$ 12x 6x

ine Vectors Line Vectors
 $\vec{b} \perp \vec{t}$
 $\vec{t}_1 = \vec{b}_1 \times \vec{n}_1$
 $\vec{t}_2 = \vec{b}_1 \times \vec{n}_2$
 $\vec{t}_3 = \vec{b}_1$
 $\vec{t}_4 = \vec{b}_2$
 $\vec{t}_5 = \vec{b}_1 \times \vec{n}_2$
 $\vec{t}_6 = \vec{b}_2$ 12x 6x

ine Vectors
 $\vec{b} \perp \vec{t}$
 $\vec{t}_1 = \vec{b}_1 \times \vec{n}_1$
 $\vec{t}_2 = \vec{b}_1 \times \vec{n}_2$
 $\vec{t}_3 = \vec{b}_2$
 $\vec{t}_4 = \vec{b}_2$
 $\vec{t}_5 = \vec{b}_3$
 $\vec{t}_6 = \vec{b}_3$
 $\vec{t}_7 = \vec{b}_3$
 $\vec{t}_8 = \vec{b}_1$
 $\vec{t}_9 = \vec{b}_2$
 $\vec{t}_1 = \vec{b}_3$ 12x 6x
 \vec{b} ine Vectors
 \vec{b} \vec{b} \vec{t}
 \vec{t} = $\vec{b}_1 \times \vec{n}_1$
 $\vec{t}_2 = \vec{b}_1 \times \vec{n}_2$
 $\vec{t}_3 = \vec{b}_2 \times \vec{n}_3$
 $\vec{t}_4 = \vec{b}_2 \times \vec{n}_4$
 $\vec{t}_5 = \vec{b}_3$
 $\vec{t}_6 = \vec{b}_4$
 $\vec{t}_7 = \vec{b}_1 \times \vec{n}_4$
 $\vec{t}_8 = \vec$ 12x 6x
 $\vec{b} \perp \vec{t}$
 $\vec{t}_1 = \vec{b}_1 \times \vec{n}_1$
 $\vec{t}_2 = \vec{b}_1 \times \vec{n}_2$
 $\vec{t}_3 = \vec{b}_2 \times \vec{n}_3$
 $\vec{t}_4 = \vec{b}_2 \times \vec{n}_4$
 $\vec{t}_5 = \vec{b}_3 \times \vec{n}_5$
 $\vec{t}_6 = \vec{b}_4$
 $\vec{t}_7 = \vec{b}_5$
 $\vec{t}_8 = \vec{b}_1 \times \vec{n}_5$
 $\vec{t}_9 = \vec{b}_1 \times \vec$ $\vec{t}_{14} = \vec{b}_2$ $\vec{t}_{16} = \vec{b}_4$ $\vec{t}_{17} = \vec{b}_5$ \vec{O} || \vec{t}
 \vec{O} || \vec{t}
 $\vec{E}_{13} = \vec{b}_1$ Dis $\begin{array}{c|c}\n\mathbf{\vec{5}} & \mathbf{\vec{6}} \\
\hline\n\vdots & \vdots \\
\mathbf{\vec{6}} & \mathbf{\vec{7}} \\
\mathbf{\vec{8}} & \mathbf{\vec{8}} \\
\mathbf{\vec{7}} & \mathbf{\vec{8}} \\
\mathbf{\vec{8}} & \mathbf{\vec{9}} \\
\mathbf{\vec{1}} & \mathbf{\vec{1}} \\
\mathbf{\vec{1}} & \mathbf{\vec{5}} \\
\mathbf{\vec{1}} & \mathbf{\vec{1}} \\
\mathbf{\vec{1}} & \mathbf{\vec{2}} \\
\mathbf{\vec{1}} & \mathbf{\vec{2}} \\
\mathbf{\vec{5}} & \mathbf{\vec{1}} \\$ 15 3 $\begin{aligned}\n\mathbf{E}_{13} &= \mathbf{b}_1 \\
\mathbf{E}_{14} &= \mathbf{b}_2 \\
\mathbf{E}_{15} &= \mathbf{b}_3 \\
\mathbf{E}_{16} &= \mathbf{b}_4 \\
\mathbf{E}_{16} &= \mathbf{b}_4\n\end{aligned}$ DIS $\begin{aligned}\n\dot{\vec{b}}_{14} &= \vec{b}_2 \\
\dot{\vec{b}}_{15} &= \vec{b}_3 \\
\dot{\vec{b}}_{16} &= \vec{b}_4 \\
\dot{\vec{b}}_{17} &= \vec{b}_5 \\
\dot{\vec{b}}_{18} &= \vec{b}_1\n\end{aligned}$ $\begin{array}{ccc}\n\ddot{a}_{15} &= b_3 \\
\ddot{b}_{16} &= \vec{b}_4 \\
\ddot{b}_{17} &= \vec{b}_5 \\
\ddot{b}_{18} &= \vec{b}_6\n\end{array}$ dist
 $\begin{array}{ccc}\n\ddot{b}_{15} \\
\ddot{b}_{18} \\
\ddot{b}_{19} \\
\ddot{c}_{18} \\
\ddot{c}_{19} \\
\ddot{c}_{10} \\
\ddot{c}_{11} \\
\ddot{c}_{12} \\
\ddot{c}_{13} \\
\ddot{c}_{14} \\
\ddot{c}_{15} \\
\ddot{c}_{18} \\
\ddot{c$ **6 Line Vectors**

Number of $=\vec{b}_1$ **Dislocation Types** 12× 6×
 Line Vectors
 Line Vectors
 Line Vectors
 D
 \vec{b} $\parallel \vec{t}$
 $= \vec{b}_1 \times \vec{n}_1$
 $= \vec{b}_1 \times \vec{n}_2$
 $= \vec{b}_2 \times \vec{n}_3$
 $\vec{t}_1 = \vec{b}_2$
 $\vec{t}_2 = \vec{b}_3$
 Edge = 12
 Screw = 6 12x 6x
 $\vec{b} \perp \vec{t}$
 \vec{b} = $\vec{b}_1 \times \vec{n}_1$
 \vec{b} = $\vec{b}_1 \times \vec{n}_1$
 \vec{b} = $\vec{b}_1 \times \vec{n}_2$
 $\vec{b}_1 \times \vec{n}_2$
 $\vec{b}_2 \times \vec{n}_3$
 $\vec{b}_3 = \vec{b}_2$
 $\vec{b}_3 \times \vec{n}_3$
 $\vec{t}_1 = \vec{b}_2$
 $\vec{t}_2 = \vec{b}_3$
 $\vec{t}_3 = \vec{b}_$ 12x 6x
 $\vec{b} \perp \vec{t}$
 $= \vec{b}_1 \times \vec{n}_1$
 $= \vec{b}_1 \times \vec{n}_2$
 $= \vec{b}_2 \times \vec{n}_3$
 $= \vec{b}_2 \times \vec{n}_4$
 $= \vec{b}_3 \times \vec{n}_5$
 $= \vec{b}_5 \times \vec{n}_6$
 $\vec{t}_1 = \vec{b}_2$
 $\vec{t}_2 = \vec{b}_3$
 $\vec{t}_3 = \vec{b}_1$
 $= \vec{b}_2$
 $= \vec{b}_3 \times \vec{n}_4$
 $= \vec{b}_1$ 12x 6x

e Vectors
 \vec{b} Line Vectors
 \vec{b} Number of
 \vec{b} Number of
 \vec{b} Number of
 \vec{b} Number of
 \vec{b} Number o 12x 6x
 $\vec{b} = \vec{b}_1 \times \vec{n}_1$
 $\vec{b} = \vec{b}_1 \times \vec{n}_2$
 $\vec{b}_2 \times \vec{n}_3$
 $\vec{b}_3 = \vec{b}_2$
 $\vec{b}_3 \times \vec{n}_4$
 $\vec{b}_4 = \vec{b}_2$
 $\vec{b}_5 = \vec{b}_3$
 $\vec{b}_6 = \vec{b}_4$
 $\vec{b}_7 = \vec{b}_5$
 $\vec{b}_8 \times \vec{n}_6$
 $\vec{b}_8 = \vec{b}_6$
 $\vec{b}_8 \times \vec{n}_7$ 12x 6x
 b Line Vectors
 c b line Vectors
 c b line Vectors
 c b line vectors
 c b line c
 d d line
 c b line
 c d
 c Example 12x
 Example 12x
 \vec{b}
 \vec{b}
 \vec{b}
 \vec{b}
 \vec{c}
 \vec{b}
 \vec{a}
 \vec{b}
 \vec{a}
 \vec{b}
 \vec{c}
 \vec{a}
 \vec{b}
 $\$ $\begin{array}{ll}\n\overrightarrow{O} \perp \overrightarrow{t} \\
= \vec{b}_1 \times \vec{n}_1 \\
= \vec{b}_1 \times \vec{n}_2 \\
= \vec{b}_2 \times \vec{n}_3 \\
= \vec{b}_2 \times \vec{n}_3 \\
= \vec{b}_3 \times \vec{n}_5 \\
= \vec{b}_3 \times \vec{n}_6 \\
= \vec{b}_4 \times \vec{n}_7 \\
= \vec{b}_5 \times \vec{n}_9 \\
= \vec{b}_5 \times \vec{n}_9 \\
= \vec{b}_5 \times \vec{n}_9 \\
= \vec{b}_5 \times \vec{n}_1\n\end{array}$ **D**
 $\vec{b}_1 \times \vec{n}_1$
 $=\vec{b}_1 \times \vec{n}_2$
 $=\vec{b}_2 \times \vec{n}_3$
 $=\vec{b}_2 \times \vec{n}_4$
 $=\vec{b}_3 \times \vec{n}_5$
 $=\vec{b}_3 \times \vec{n}_6$
 $=\vec{b}_4 \times \vec{n}_7$
 $=\vec{b}_4 \times \vec{n}_8$
 $=\vec{b}_5 \times \vec{n}_9$
 $=\vec{b}_5 \times \vec{n}_{10}$
 $=\vec{b}_6 \times \vec{n}_{11}$
 $=\vec{b}_6 \times \vec{n}_{12}$
 $=\vec{b}_$ $\begin{array}{ccc}\n\overrightarrow{b}_1 \times \overrightarrow{n}_1 \\
\overrightarrow{b}_1 \times \overrightarrow{n}_2 \\
\overrightarrow{b}_2 \times \overrightarrow{n}_3 \\
\overrightarrow{t}_3 = \overrightarrow{b}_2 \\
\overrightarrow{b}_2 \times \overrightarrow{n}_3 \\
\overrightarrow{t}_5 = \overrightarrow{b}_3 \\
\overrightarrow{b}_3 \times \overrightarrow{n}_5 \\
\overrightarrow{b}_3 \times \overrightarrow{n}_5 \\
\overrightarrow{b}_4 \times \overrightarrow{n}_7 \\
\overrightarrow{b}_5 = \overrightarrow{b}_5 \\
\overrightarrow{b}_6 \times \overrightarrow{n}_1 \\
\overrightarrow{b}_5 = \overrightarrow{b}_5 \\
\overrightarrow{b}_5 \times \overrightarrow{n}_9 \\
\overrightarrow{$ $\begin{aligned}\n&= \vec{b}_1 \times \vec{n}_2 \\
&= \vec{b}_2 \times \vec{n}_3 \\
&= \vec{b}_2 \times \vec{n}_4 \\
&= \vec{b}_3 \times \vec{n}_5 \\
&= \vec{b}_3 \times \vec{n}_6 \\
&= \vec{b}_4 \times \vec{n}_7 \\
&= \vec{b}_5 \times \vec{n}_9 \\
&= \vec{b}_5 \times \vec{n}_{10} \\
&= \vec{b}_6 \times \vec{n}_{11} \\
&= \vec{b}_6 \times \vec{n}_{12}\n\end{aligned}\n\qquad\n\begin{aligned}\n&= \vec{b}_1 \times \vec{n}_2 \\
&= \vec{b}_2 \times \vec{n}_4 \\$ $\begin{array}{ccc}\n=\vec{b}_2 \times \vec{n}_3 \\
=\vec{b}_2 \times \vec{n}_4 \\
=\vec{b}_3 \times \vec{n}_5 \\
=\vec{b}_3 \times \vec{n}_6 \\
=\vec{b}_4 \times \vec{n}_7 \\
=\vec{b}_4 \times \vec{n}_8 \\
=\vec{b}_5 \times \vec{n}_9 \\
=\vec{b}_5 \times \vec{n}_{10} \\
=\vec{b}_6 \times \vec{n}_{12}\n\end{array}$
 $\begin{array}{c}\n=\vec{b}_2 \times \vec{n}_4 \\
=\vec{b}_3 \\
=\vec{b}_6\n\end{array}$
 $\begin{array}{c}\n=\vec{b}_1 \\
=\vec{b}_2 \\
=\vec{b$ $= b_3$ Screw = 6 $=\mathsf{b}_6$ **dislocations of opposite** \vec{b} $\begin{vmatrix} \vec{b} & \vec{c} \\ \vec{b} & \vec{c} \\ \vec{c} & \vec{d} \\ \vec{d} & \vec{e} \\ \vec{e} & \vec{d} \\ \vec{e} & \vec{d} \end{vmatrix}$ = \vec{b} = \vec{b}

Number

Dislocation
 $\begin{vmatrix} \vec{c} & \vec{d} \\ \vec{e} & \vec{d} \\ \vec{e} & \vec{e} \end{vmatrix}$ = 1 t b t b **i**
 $\vec{t}_{13} = \vec{b}_1$
 $\vec{t}_{14} = \vec{b}_2$
 $\vec{t}_{15} = \vec{b}_3$
 $\vec{t}_{16} = \vec{b}_4$
 $\vec{t}_{17} = \vec{b}_5$
 if₁₇ = \vec{b}_6
 if₁₇ = \vec{b}_7 $\begin{array}{c|c|c} \hline \dot t_{13} & = \vec b_1 & \text{Number} \cr \vec t_{14} & = \vec b_2 & \text{E} \cr \vec t_{15} & = \vec b_3 & \text{E} \cr \vec t_{16} & = \vec b_4 & \text{S} \cr \vec t_{17} & = \vec b_5 & \text{18} \times \text{2 =} \cr \vec t_{18} & = \vec b_6 & \text{dislocations of } \cr \end{array}$ **Edge = 1**
 $\vec{t}_{14} = \vec{b}_2$
 $\vec{t}_{15} = \vec{b}_3$
 $\vec{t}_{16} = \vec{b}_4$
 $\vec{t}_{17} = \vec{b}_5$
 $\vec{t}_{18} = \vec{b}_6$
 $\begin{matrix}\n\text{dislocations of } c \\
\text{sign needs to be dis-$ **Edge = 12** $18 \times 2 = 36$ **sign needs to be distinguished**

Lower-Bound GND Density

GND Density

 \Rightarrow Density of geometrically-necessary dislocations (GND, ρ_G) maps calculated from the EBSD-measured Euler Angles (ϕ_1 , Φ , ϕ_2) for specimens with 0% (as-received), 7.8% and 13.9% of imparted plastic strain.

 \Rightarrow Step size (h) = 200 nm **Magnification = 153x**

 Discrete measurements provide information on spatial distribution of GND across the microstructure.

 GNDs arrange themselves into energetically favourable configurations forming geometricallynecessary boundaries (GNBs) subdividing grains into the sub-grains.

GND Spacing

 \Rightarrow Spacing between geometrically-necessary dislocations (GND, d_{G}) recalculated from the GND density (p_{G}) for specimens with 0% (as-received), 7.8% and 13.9% of imparted plastic strain.

 Non-uniform distribution of GNDs in the microstructure as GNDs arrange themselves into energetically favourable configurations subdividing grains into the sub-grains.

GND Density - High Resolution

 \Rightarrow Density of geometrically-necessary dislocations (GND, $\rho_{\text{\tiny G}}$) calculated from the EBSD-measured Euler Angles (ϕ_1, Φ, ϕ_2) .

 \Rightarrow Spacing between geometrically-necessary dislocations (GND, d_G) recalculated from the GND density (ρ_G).

GND Density

13|

Microstructure-Averaged GND Density

 \Rightarrow Distribution (histogram) of discrete GND density ($\rho_{\text{\tiny G}}$) measurements for specimen with 0% (as-received), 7.8% and 13.9% of imparted plastic strain ($\varepsilon_{\rm p}$).

the heterogeneity of the GND distribution across variously oriented grains within the microstructure, the mean can be then taken as the microstructure-averaged (bulk) GND density.

Microstructure-Averaged GND Density

 \Rightarrow The development of the mean GND density as a function of number of analysed grains in GND density maps for specimen with 0% (as-received), 7.8% and 13.9% of imparted plastic strain $(\varepsilon_{\rm p})$.

Log-Normal Distribution

$$
f(\rho_G|\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} exp\left(\frac{-(\ln(\rho_G) - \mu)^2}{2\sigma^2}\right)
$$

Mean & Variance

MEAN of the lognormal distribution

$$
m(\rho_G) = exp\left(\mu + \frac{\sigma^2}{2}\right)
$$

$$
\nu(\rho_G) = \exp(2\mu + \sigma^2)(\exp(\sigma^2))
$$

VARIANCE of the lognormal distribution

⇒ Due to the increase in heterogeneity of GND distribution with imparted plastic strain, a larger number of grains is required to reach solution convergence.

Microstructure-Averaged GND Density

 The development of the **mean** GND density distribution as a function of imparted plastic strain $(\varepsilon_{\rm p})$ for all tested specimens.

 \Rightarrow The development of the **variance** of GND density distribution as a function of imparted plastic strain $(\varepsilon_{\rm p})$ for all tested specimens.

16|

GND Types in Solution

 \Rightarrow Map showing the ratio of screw dislocations to the total number of dislocations in the solution (6) for the specimen with 13.9% imparted plastic strain.

 \Rightarrow Screw dislocation ratio as a function of imparted plastic strain for all tested specimens.

⇒ The uniqueness of the solution is not guaranteed. Only pure edge and pure screw dislocations have been considered in the calculation.

HRSD Measurements

HRSD Set-Up

Beam Size 200um

 \Rightarrow High-resolution synchrotron diffraction (HRSD) set-up at 1-ID high-energy beamline at the Advanced Photon Source (APS), Argonne National Laboratory (ANL).

 \Rightarrow The total diffraction peak shape (which includes peak broadening) *ITOTAL* of a is the convolution of the shape contribution caused by the size of coherently scattering domains (sub-grains) *I SIZE* and the contribution caused by strain fields of present dislocations *I STRAIN*.

 \Rightarrow Convolution is defined as the invers Fourier transform of the product of the individual Fourier transform of the components.

$$
I_{TOTAL} = I_{SIZE} * I_{STRAIN} = \mathcal{F}^{-1}(A^{Size} A^{Strain})
$$

Diffraction Peak Broadening

 \Rightarrow The broadening due to the size of the coherently diffracting domains (sub-grains) is the same for all hkl diffraction peaks, while the broadening component due to the strain field of present dislocations varies between diffraction peaks. This variation in the strain (dislocation) broadening is not monotonous due to the anisotropic behaviour described by the dislocation contrast factors.

Diffraction Peak Broadening

Total Dislocation Density & Sub-Grain Size

 \Rightarrow Total dislocation density ($\rho_{\rm T}$) and size of the coherently scattering domains (SCDs) obtained by line profile analysis (LPA) of HRSD patterns as a function of imparted plastic strain ($\varepsilon_{\rm p}$) - open symbols represents individual measurements along the sample loading axis, and solid symbol represents the mean values.

EBSD + HRSD Measurements

EBSD- & HRSD- Measured Dislocation Density

 \Rightarrow Comparison of the HRND-measured total dislocation density ($\rho_{\rm T}$) and the EBSD-measured density of GNDs ($\rho_{\rm G}$), together with expected dislocation densities calculated using the modified Taylor's model, and single-slip Ashby's model.

 \Rightarrow **Both GNDs and SSDs contribute to the workhardening of the material.** \Rightarrow **SSDs represent more than 80% of all the present dislocations.**

GND Density & Size of CSDs

 \Rightarrow Comparison of the HRSD-measured size of CSDs (red circles) with EBSD-measured spacing of GNDs (d_G) (blue squares), and the estimated minimum size of CSDs (green triangles) from EBSD-measured density of GNDs (ρ_{G}).

 This defines the connection between EBSDmeasured ρ_G and HRSD-measured $\langle X \rangle_A$ one can then **estimate** ρ_{G} from $\langle \mathsf{X} \rangle_{\mathsf{A}}$.

Conclusions

- \Rightarrow EBSD measures the lower-bound ρ_G , while HRSD measures ρ_T .
- \Rightarrow The minimum detected ρ_T measured by HRSD is about **1E13 m⁻²**, while the minimum ρ_G measured by EBSD is about 2E12 m⁻².
- \Rightarrow EBSD is more sensitivity to the small amount of plastic deformation in the material, while HRSD gets more accurate with higher amount of plastic deformation.
- \Rightarrow There is a connection between EBSD-measured ρ_G and HRSD-measured size of CSDs $(\langle X \rangle_A)$.
- \Rightarrow **EBSD** = Density of GNDs (ρ_G), **+ estimate the minimum Size of CSDs**
- \Rightarrow **HRSD** = Total Dislocation Density (ρ_T), size of CSDs ($\langle X \rangle$ _A), + estimate of **minimum density of GNDs** (ρ_G)

Thank you for your time and interest in this work. We hope you will find it useful.

Developed Matlab code for calculation of GNDs is available as a supplementary material with out Acta Materialia paper.