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Dislocations & Sub -Grain Structure
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Y Tomaintain compatible deformation across variously oriented grains in a

) . o .| ~50um = 500000A
polycrystalline aggregate, the voids and overlaps between the individual grainss = >

which would otherwise appear due to the crystallites (grains) anisotropy are
corrected by the storing a portion of dislocations in the form of geometrically
necessary dislocation&{ND$. Plastically deformed material also stores so
called statisticallstored dislocations§SDg which are stored by mutual
random trapping. BotlGNDsand SSDsirrange themselves into energetically
favourable configurations, forming geometricafigcessary boundarie&G(\B3
and incidental dislocation boundarid®B3, respectively.




Experiment
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Y EBSDrientationmap showing the overall Y Interrupted tensile tests were performed to varying
equiaxed grairstructureof our solutionannealed levels of imparted plastic strain. Samples were
Ni201 before testing. extracted from the gauge length for EBSD and HRSD
measurement.
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EBSD Measurements
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Electron Back -Scatter Diffraction ( EBSD)

" Kukuchi Diffraction

Pattern
Back-Scattered

Y EBSDis a scanning electron microscope (SEM) Electrons

based technique that gives crystallographic information
about the microstructure of a sample. Y The data collected with EBSD is spatially distributed
and is visualised iso-called EBSD orientation maps.
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EBSD & Dislocations
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Y GNDshave a geometrical consequence giving rise to a curvature of

the crystal lattice, which can be measuredESDechnique The crystal
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Lattice Curvature
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Lattice Curvature & GND Density
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Lower -Bound GND Density
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3 With a set of 6 linear
equations and 36
unknowns, a large
number of possible
solutions exists
whereby a unique
solution cannot be
obtained. It is therefore
necessary to constrain
the solution using
physically-based
constraints.
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all possible
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Simplex Optimisation Algorithm
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initial guess
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GND Density
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Y Density of geometricalipecessary dislocation§ND * ) maps calculated from the EBSieasured Euler Angles,(F ,f,)
for specimens with 0% (asceived), 7.8% and 13.9% of imparted plastic strain.

Y Step size (h) = 200 nm Y Discrete measurements Y GNDsarrange themselves into energetically

Y Magnification =153x provide information on spatial favourable configurations forming geometricaHy
distribution of GNDacross the necessary boundaries (GNBs) subdividing grains into
microstructure. the sub-grains.




GND Spacing
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Y Spacing between geometricadhecessary dislocation&ND dg) recalculated from the

GNDdensity(" o) for specimens with 0% (asceived), 7.8% and 13.9% of imparted plastic |
strain. A 0] /M

N
Y Non-uniform distribution of GNDsn the microstructureasGNDs _ _ \
arrange themselves into energetically favourable configurations D|S|OC'§1'“0” GNDDensit
subdividing grains into the sugrains. spacing y




GND Density - High Resolution

lGrain Boundary lGrain Boundary

pe [m :]
Y Density of geometricalipecessary dislocations Y Spacing between geometricalhecessary
(GND " ) calculated from the EBSeasured Euler dislocations GND d) recalculated from th&ND
Anglesf,,F f)). density(" o).

Y Step size (h) =20 nm
Y Magnification = 1000x
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GND Density

EBSD Data - GND Density
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Y Density of geometricalipecessary dislocation&ND
"o maps calculated from the EB®ikasured Euler

SEM image Angles{,F f,).




Microstructure -Averaged GND Density
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Y Distribution (histogram) of discre@NDdensity ( o)
measurements for specimen with 0% {aseived), 7.8% and
13.9% of imparted plastic straifJ.
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Y The variance of th&sNDdensity distribution describes
the heterogeneity of theGNDdistribution across
variously oriented grains within the microstructure, the
mean can be then taken as the microstructusseraged
(bulk) GNDdensity.
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Microstructure -Averaged GND Density

LogNormal Distribution
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required to reach solution convergence.
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Microstructure -Averaged GND Density
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GND Types in Solution
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Y Map showing the ratio of screw dislocatiotsthe
total number of dislocations in the solution (6) for the
specimen with 13.9%nparted plastic strain.
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Y Screw dislocation ratio as a function of imparted
plastic strain for all tested specimens.

175

Y The uniquenessf the solution is not guaranteed.
Y Onlypure edge and pure screw dislocations have
been considered in thealculation.




HRSD Measurements
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HRSD Set-Up

- Detector: 2048 2048 pixels
- Pixel Size: 208 200>m
- Distance: 1873 mm
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Diffraction Peak Broadening
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broadening l;o7. Of @aisthe convolution of the shapeontribution
caused by the size of coherently scattering domains-(gains)lg ;e
andthe contribution caused by strain fields of present dislocations
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Y Convolutionis defined as the invers Fourier transform of the
product of the individual Fourier transform of the components.
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Diffraction Peak Broadening

V\{illiamsanaII Plot
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Y The broadening due to the size of the coherently diffracting domainsgsaibs) igshe same for alhkl
diffraction peakswhile thebroadening component due to the strain field of present dislocations varies between
diffraction peaks. This variation in the strain (dislocation) broadening is not monotonous thee anisotropic
behaviour described by the dislocation contréesttors.
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Diffraction Peak Broadening

Y 2Ddiffraction pattern
(DebyeScherrerrings) of
specimen with 13.9% of
imparted plastic strain.
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Y Comparison ofull diffraction patterns for specimens with 0% {@seived)
and 13.9% of imparted plastic strain. The differeahavior of siz¢sub-grain)
and strain (dislocation) pedkoadeningcan be resolved if many peaks are
available.

Y Thediffraction peak broadeningas analysed usirthe eCMWRextended
Convolutional Multiple Whole Profile) LPA software




Total Dislocation Density & Sub -Grain Size

Y Total dislocation densitfw) and size of the coherently scattering domaiBEDsobtained by line profile
analysis (LPA) 6fRS[patterns as a function of imparted plastic stram)( open symbols represents individual
measurements along the sample loading axis, and solid symbol represents the mean values.
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